Sains Malaysiana
53(5)(2024): 1119-1131
http://doi.org/10.17576/jsm-2024-5305-12
Green
Synthesis of Silver Nanoparticles using Aqueous Fruit Peel Extract of Citrus aurantifolia: Optimization, Its Characterization and Stability Test
(Sintesis Hijau Nanozarah Perak menggunakan Ekstrak Kulit Buah Berair Citrus aurantifolia: Pengoptimuman, Pencirian dan Ujian Kestabilannya)
NABILA
ADLINA NASRUDDIN1,
NUR RAIHANA ITHNIN1, HIDAYATULFATHI BINTI OTHMAN2, ZATUL-'IFFAH BINTI ABU HASAN3 & NORASHIQIN MISNI1,*
1Department
of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Centre for Toxicology and Health Risk Studies, Faculty
of Health Sciences, Universiti Kebangsaan
Malaysia, Jalan Raja Muda A. Aziz, 50300
Kuala Lumpur, Malaysia
3Faculty
of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai,
71800 Nilai, Negeri
Sembilan, Malaysia
Received:
13 September 2023/Accepted: 28 March 2024
Abstract
In this present study, silver
nanoparticles were synthesized by green biological synthesis method using plant extract from fruit
peel of Citrus aurantifolia as reducing agents. All the parameters in the synthesis of silver nanoparticles (AgNPs) were optimized to achieve a better yield, controlled size
and stability of the particles. The biosynthesis of silver nanoparticles was
monitored via UV-vis spectrophotometer and stability test was done. The
resulting UV-Vis spectra of synthesized AgNPs from C. aurantifoliafruit peel extract (CAFPE) showed standard surface plasmon resonance band at 420 nm
which indicated the presence of AgNPs. The optimum
result was obtained with an optimum concentration at 4 mM AgNO3,
leaving in a dark room temperature for 24 h and using a concentration 1:3 ratio (extract: silver nitrate). Moreover, the stability of the CAFPE-AgNPs was also observed after 30 days of synthesis and even up to 10 months, indicating optimization plays major role towards the stability fate of nanoparticles. The FTIR analysis showed possible functional groups of
biomolecules that play roles in the bioreduction and
capping of silver nanoparticles. In addition, it is believed that these
parameters are highly suitable for bulk production of single spherical AgNPs with diameter 29.6- 45.2
nm confirmed via FESEM. Thus, the obtained results clearly suggest that optimization
of silver nanoparticles may have important role in attaining a better yield and
stability of metal nanoparticles, refraining back to its original structure or particles.
Keywords: Citrus aurantifolia; green synthesis; optimization; plant
extract; silver
nanoparticles
Abstrak
Dalam kajian ini, nanozarah perak
telah disintesis melalui kaedah sintesis biologi hijau menggunakan ekstrak
tumbuhan daripada kulit buah Citrus aurantifolia sebagai agen
penurunan. Semua parameter dalam sintesis nanozarah perak (AgNPs) telah dioptimumkan untuk mencapai hasil yang lebih baik, saiz terkawal dan kestabilan zarah. Biosintesis nanozarah perak diuji melalui spektrofotometer UV-vis dan ujian kestabilan juga telah dilakukan. Spektrum UV-Vis terhasil bagi AgNPs tersintesis daripada ekstrak kulit buah C. aurantifolia (CAFPE) menunjukkan jalur resonans plasmon permukaan piawai pada 420 nm yang menunjukkan keberhasilan pembentukan AgNPs. Keputusan optimum diperoleh dengan kepekatan optimum pada 4 mM AgNO3, dibiarkan dalam suhu bilik gelap selama 24 jam dan menggunakan nisbah kepekatan 1:3 (ekstrak: perak nitrat). Selain itu, kestabilan CAFPE-AgNPs juga diperhatikan selepas 30 hari sintesis dan malah sehingga 10 bulan, menunjukkan pengoptimuman memainkan peranan utama ke arah nasib kestabilan nanozarah. Analisis FTIR menunjukkan kebarangkalian kumpulan biomolekul yang memainkan peranan dalam bioreduksi dan agen penutup nanozarah perak. Selain itu, adalah dipercayai bahawa parameter ini sangat sesuai untuk pengeluaran pukal AgNPs sfera tunggal dengan diameter 29.6 - 45.2 nm yang turut disahkan melalui FESEM. Oleh itu, keputusan yang diperoleh dengan jelas menunjukkan bahawa pengoptimuman nanozarah perak mungkin mempunyai peranan penting dalam mencapai hasil yang lebih baik dan ke arah kestabilan nanozarah logam, selain daripada menahan kembalinya AgNPs kepada struktur atau zarah asalnya.
Kata kunci: Citrus aurantifolia; ekstrak pokok; nanozarah perak; pengoptimuman; sintesis hijau
REFERENCES
Adebayo-Tayo, B.C., Akinsete, T.O.
& Odeniyi, O.A. 2016. Phytochemical composition and comparative evaluation
of antimicrobial activities of the juice extract of Citrus aurantifolia and its silver nanoparticles. Nig. J. Pharm.
Res. 12(1): 59-64.
Ahmad, B., Ali, J. & Bashir, S.
2013. Optimization and effects of different reaction conditions for the
bioinspired synthesis of silver nanoparticles using Hippophae rhamnoides linn. leaves aqueous extract. World Applied Sciences Journal 22(6): 836-843. https://doi.org/10.5829/idosi.wasj.2013.22.06.7394
Ahmed, S., Ahmad, M., Swami, B.L. & Ikram, S. 2016. A review on plants extract
mediated synthesis of silver nanoparticles for antimicrobial applications: A
green expertise. Journal of Advanced Research 7(1): 17-28. https://doi.org/10.1016/j.jare.2015.02.007
Alafandi, L., Nasaruddin, R.R., Aziz, A., Engliman, S. & Mastuli, M.S. 2021. Green synthesis of silver
nanoparticles using coffee extract for catalysis. Malaysian NANO International Journal 1(2): 13-25. https://doi.org/10.22452/mnij.vol1no2.2
Alkhulaifi, M.M., Alshehri, J.H.,
Alwehaibi, M.A., Awad, M.A., Al-Enazi, N.M., Aldosari, N.S., Hatamleh, A.A.
& Abdel-Raouf, N. 2020. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi
Journal of Biological Sciences 27(12): 3434-3441.
https://doi.org/10.1016/j.sjbs.2020.09.031
Arya, G., Kumari, M.R., Gupta, N., Kumar, A., Chandra, R. & Nimesh, S. 2018. Green synthesis of silver
nanoparticles using Prosopis juliflora bark extract: Reaction optimization, antimicrobial and catalytic activities. Artificial
Cells, Nanomedicine and Biotechnology 46(5): 985-993.
https://doi.org/10.1080/21691401.2017.1354302
Baker, S., Rakshith, D., Kavitha,
K.S., Santosh, P., Kavitha, H.U., Rao, Y. & Satish, S. 2013. Plants:
Emerging as nanofactories towards facile route in synthesis of
nanoparticles. BioImpacts3(3): 111-117.
https://doi.org/10.5681/bi.2013.012
Balavijayalakshmi, J. & Ramalakshmi, V. 2017. Carica papaya peel mediated synthesis of
silver nanoparticles and its antibacterial activity against human pathogens. Journal
of Applied Research and Technology 15(5): 413-422.
https://doi.org/10.1016/j.jart.2017.03.010
Barik, T.K. 2020. Molecular
Identification of Mosquito Vectors and Their Management. Springer.
Bélteky, P., Rónavári, A.,
Zakupszky, D., Boka, E., Igaz, N., Szerencsés, B., Pfeiffer, I., Vágvölgyi, C.,
Kiricsi, M. & Kónya, Z. 2021. Are smaller nanoparticles always better?
Understanding the biological effect of size-dependent silver nanoparticle
aggregation under biorelevant conditions. International Journal of
Nanomedicine 16: 3021-3040. https://doi.org/10.2147/IJN.S304138
Bhuyar, P., Rahim, M.H.A., Sundararaju, S., Ramaraj, R., Maniam, G.P. & Govindan, N. 2020. Synthesis of silver
nanoparticles using marine macroalgae Padina sp.
and its antibacterial activity towards pathogenic bacteria. Beni-Suef
University Journal of Basic and Applied Sciences 9: 3.
https://doi.org/10.1186/s43088-019-0031-y
Boshtam, M., Moshtaghian, J., Naderi, G., Asgary, S. & Nayeri, H. 2011. Antioxidant effects of Citrus aurantifolia (Christm) juice and peel extract on
LDL oxidation. J. Res. Med Sci. 16(7): 951-955.
Corbierre, M.K., Cameron, N.S., Sutton, M., Mochrie, S.G., Lurio, L.B., Rühm, A. & Lennox, R.B. 2001. Polymer-stabilized
gold nanoparticles and their incorporation into polymer matrices. Journal
of the American Chemical Society 123(42): 10411-10412.
Dada, A.O., Adekola, F.A., Adeyemi,
O.S., Bello, M.O., Adetunji, C.O., Awakan, O.J. & Femi-Adepoju, G.A. 2018.
Exploring the effect of operational factors and characterization imperative to
the synthesis of silver nanoparticles. In Silver Nanoparticles -
Fabrication, Characterization and Applications, edited by Maaz, K. InTech. https://doi.org/10.5772/intechopen.76947
Devi, L.S. & Joshi, S.R. 2015.
Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. Journal
of Microscopy and Ultrastructure 3(1): 29.
https://doi.org/10.1016/j.jmau.2014.10.004
Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H. & Yacaman, M.J. 2005. Interaction of silver nanoparticles with HIV-1. Journal
of Nanobiotechnology 3: 6. https://doi.org/10.1186/1477-3155-3-6
El-Kassas, H.Y. & El-Sheekh,
M.M. 2014. Cytotoxic activity of biosynthesized gold nanoparticles with an
extract of the red seaweed Corallina
officinalis on the MCF-7 human breast cancer cell line. Asian Pacific
Journal of Cancer Prevention 15(10): 4311-4317.
https://doi.org/10.7314/APJCP.2014.15.10.4311
Guo, Q., Guo, Q., Yuan, J. &
Zeng, J. 2014. Biosynthesis of gold nanoparticles using a kind of flavonol:
Dihydromyricetin. Colloids and Surfaces A: Physicochemical and Engineering
Aspects 441: 127-132. https://doi.org/10.1016/j.colsurfa.2013.08.067
Herawati, D., Ekawati, E.R. & Yusmiati,
S.N.H. 2020. Identification of
saponins and flavonoids in lime (Citrus
aurantifolia) peel extract. Proc. of the 5th NA Int. Conf. Ind. Eng. Oper. Manag, Detroit, Michigan, USA, August 10-14. pp. 3661-3666.
Ibrahim, H.M.M. 2015. Green synthesis and
characterization of silver nanoparticles using banana peel extract and their
antimicrobial activity against representative microorganisms. Journal of
Radiation Research and Applied Sciences 8(3): 265-275.
https://doi.org/10.1016/j.jrras.2015.01.007
Iravani, S. 2011. Green synthesis of metal
nanoparticles using plants. Green Chemistry 13(10): 2638-2650.
https://doi.org/10.1039/c1gc15386b
Jalani, N.S., Michell, W., Lin, W.E., Hanani, S.Z., Hashim, U. & Abdullah, R. 2018. Biosynthesis of silver
nanoparticles using Citrus grandis peel extract. Malaysian Journal of Analytical Sciences 22(4): 676-683.
https://doi.org/10.17576/mjas-2018-2204-14
Kaderides, K. & Goula, A.M. 2017. Development and
characterization of a new encapsulating agent from orange juice by-products. Food
Research International 100: 612-622. https://doi.org/10.1016/j.foodres.2017.07.057
Karaagac, O. & Köçkar, H. 2020.
The effects of temperature and reaction time on the formation of manganese
ferrite nanoparticles synthesized by hydrothermal method. Journal of
Materials Science: Materials in Electronics 31(3): 2567-2564. https://doi.org/10.1007/s10854-019-02795-8
Krishnaraj, C., Ramachandran, R., Mohan, K. & Kalaichelvan, P.T. 2012. Optimization for rapid
synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica
Acta - Part A: Molecular and Biomolecular Spectroscopy 93: 95-99. https://doi.org/10.1016/j.saa.2012.03.002
Makarov, V.V., Love, A.J.,
Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E. &
Kalinina, N.O. 2014. “Green” nanotechnologies: Synthesis of metal nanoparticles
using plants. Acta Naturae 6(1): 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44
Malhotra, S.P.K. & Alghuthaymi, M.A. 2022. Biomolecule-assisted biogenic synthesis of metallic nanoparticles. Nanobiotechnology for Plant
Protection. Agri-Waste and Microbes for Production of Sustainable
Nanomaterials, edited by Kamel A.
Abd-Elsalam, Rajiv Periakaruppan, S. Rajeshkumar. Elsevier.
pp. 139-163.
Mandal, T.K., Fleming, M.S. & Walt, D.R. 2002. Preparation of
polymer coated gold nanoparticles by surface-confined living radical
polymerization at ambient temperature. Nano Letters 2(1): 3-7.
Mohapatra, B., Kuriakose, S. & Mohapatra, S. 2015. Rapid green synthesis of
silver nanoparticles and nanorods using Piper
nigrumextract. Journal of Alloys and Compounds 637: 119-126.
https://doi.org/10.1016/j.jallcom.2015.02.206
Monopoli, M.P., Aberg, C., Salvati,
A. & Dawson, K.A. 2020. Biomolecular coronas provide the biological
identity of nanosized materials. Nature
Nanotechnology 7: 779-786. https://doi.org/10.1201/9780429399039-7
Mustapha, T., Ithnin, N.R., Othman, H., Abu Hasan, Z.I. & Misni, N. 2023. Bio-fabrication of silver
nanoparticles using Citrus aurantifolia fruit peel extract (CAFPE) and the role of plant extract in the synthesis. Plants 12(8): 1648. https://doi.org/10.3390/plants12081648
Narang, N. & Jiraungkoorskul, W. 2016. Anticancer activity of key
lime, Citrus aurantifolia. Pharmacognosy
Reviews 10(20): 118-122. https://doi.org/10.4103/0973-7847.194043
Niluxsshun, M.C.D., Masilamani, K. & Mathiventhan, U. 2021. Green synthesis of silver
nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus
sinensis, and Citrus limon for
antibacterial activities. Bioinorganic Chemistry and Applications 2021: 6695734.
https://doi.org/10.1155/2021/6695734
Ozel, F., Kockar, H. & Karaagac,
O. 2015. Growth of iron oxide nanoparticles by hydrothermal process: Effect of
reaction parameters on the nanoparticle size. Journal of Superconductivity
and Novel Magnetism 28: 823-829. https://doi.org/10.1007/s10948-014-2707-9
Perumal, D., Abdullah, C.A.C.,
Albert, E.L. & Zawawi, R.M. 2023. Green synthesis of silver nanoparticle decorated on
reduced graphene oxide nanocomposite using Clinacanthus
nutans and its applications. Sains Malaysiana 52(3): 953-966.
https://doi.org/10.17576/jsm-2023-5203-19
Pourmortazavi, S.M., Taghdiri, M.,
Makari, V. & Rahimi-Nasrabadi, M. 2015. Procedure optimization for green
synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochimica Acta - Part A:
Molecular and Biomolecular Spectroscopy 136(PC): 1249-1254.
https://doi.org/10.1016/j.saa.2014.10.010
Qu, D., Sun, W., Chen, Y., Zhou, J. & Liu, C. 2014. Synthesis and in vitro antineoplastic
evaluation of silver nanoparticles mediated by Agrimoniae herba extract. International Journal of Nanomedicine 9(1): 1871-1882.
https://doi.org/10.2147/IJN.S58732
Raghavan, B.S., Kondath, S., Anantanarayanan, R.
& Rajaram, R. 2015. Kaempferol mediated synthesis of gold nanoparticles and
their cytotoxic effects on MCF-7 cancer cell line. Process Biochemistry 50(11): 1966-1976.
https://doi.org/10.1016/j.procbio.2015.08.003
Raja, P.B., Rahim, A.A., Qureshi,
A.K. & Awang, K. 2014. Green synthesis of silver nanoparticles using
tannins. Materials Science- Poland 32: 408-413. https://doi.org/10.2478/s13536-014-0204-2
Rakhman, S.A., Utaipan, T.,
Pakhathirathien, C. & Khummueng, W. 2022. Metal and metal oxide
nanoparticles from Mimusops elengi Linn. Extract: Green synthesis, antioxidant activity, and cytotoxicity. Sains
Malaysiana 51(9): 2857-2871. https://doi.org/10.17576/jsm-2022-5109-10
Reena, K., Prabakaran, M., Leeba, B.,
Gajendiran, M. & Antony, S.A. 2017. Green synthesis of
pectin-gold-PLA-PEG-PLA nanoconjugates: In vitro cytotoxicity and
anti-inflammatory activity. Journal of Nanoscience and Nanotechnology 17(7): 4549-4557.
Shan, J., Nuopponen, M., Jiang, H., Kauppinen, E. & Tenhu, H. 2003. Preparation of poly
(N-isopropylacrylamide)-monolayer-protected gold clusters: Synthesis methods,
core size, and thickness of monolayer. Macromolecules 36(12): 4526-4533.
Singh, P., Kim, Y.J., Zhang, D.
& Yang, D.C. 2016. Biological synthesis of nanoparticles from plants and
microorganisms. Trends in Biotechnology 34(7): 588-599.
https://doi.org/10.1016/j.tibtech.2016.02.006
Song, Z., Kelf, T.A., Sanchez, W.H.,
Roberts, M.S., Rička, J., Frenz, M. & Zvyagin, A.V. 2011.
Characterization of optical properties of ZnO nanoparticles for quantitative
imaging of transdermal transport. Biomedical Optics Express 2: 3321-3333.
Sun, W., Qu, D., Ma, Y., Chen, Y.,
Liu, C. & Zhou, J. 2014. Enhanced stability and antibacterial efficacy of a
traditional chinese medicine-mediated silver nanoparticle delivery system. International
Journal of Nanomedicine 9(1): 5491-5502. https://doi.org/10.2147/IJN.S71670
Sunday, E., Ogunyemi, I.O., Bala, M.S., Oruene, I.S., Suleiman, M.M. &
Ambali, S.F. 2015. Ethnomedical importance of Citrus aurantifolia (Christm) swingle. The Pharma Innovation Journal 4(8): 01-06. www.thepharmajournal.com.
Taniguchi, N. 1974. On the basic concept of ‘nano-technology’. In Proceedings of
International Conference on Production Engineering (ICPE); Tokyo, Part II. Japan Society of Precision Engineering. pp. 18-23.
Teranishi, T., Kiyokawa, I. & Miyake, M. 1998. Synthesis of monodisperse gold nanoparticles using linear
polymers as protective agents. Advanced Materials 10(8): 596-599.
Wolny-Koładka, K.A. &
Malina, D.K. 2017. Silver nanoparticles toxicity against airborne strains of Staphylococcusspp. Journal of Environmental Science
and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 52(13): 1247-1256.
https://doi.org/10.1080/10934529.2017.1356186
Yazdani, S., Daneshkhah, A., Diwate,
A., Patel, H., Smith, J., Reul, O., Cheng, R., Izadian, A. & Hajrasouliha,
A.R. 2021. Model for gold nanoparticle synthesis: Effect of pH and reaction
time. ACS Omega 6(26): 16847-16853.
https://doi.org/10.1021/acsomega.1c01418
Ying, S., Guan, Z., Ofoegbu, P.C.,
Clubb, P., Rico, C., He, F. & Hong, J. 2022. Green synthesis of
nanoparticles: Current developments and limitations. Environmental
Technology and Innovation. 26: 102336. https://doi.org/10.1016/j.eti.2022.102336
Yusof, F., Chowdhury, S., Sulaiman,
N. & Faruck, M.O. 2018. Effect of process parameters on the synthesis of
silver nanoparticles and its effects on microbes. Jurnal Teknologi 80(3): 115-121.
https://doi.org/10.11113/jt.v80.11465
Zhang, Y., Gu, C., Schwartzberg,
A.M., Chen, S. & Zhang, J.Z. 2006. Optical trapping and light-induced
agglomeration of gold nanoparticle aggregates. Physical Review B - Condensed
Matter and Materials Physics 73(16): 165405. https://doi.org/10.1103/PhysRevB.73.165405
*Corresponding author; email: norashiqin@upm.edu.my
|