Sains Malaysiana 53(5)(2024): 1119-1131

http://doi.org/10.17576/jsm-2024-5305-12

 

Green Synthesis of Silver Nanoparticles using Aqueous Fruit Peel Extract of Citrus aurantifolia: Optimization, Its Characterization and Stability Test

(Sintesis Hijau Nanozarah Perak menggunakan Ekstrak Kulit Buah Berair Citrus aurantifolia: Pengoptimuman, Pencirian dan Ujian Kestabilannya)

 

NABILA ADLINA NASRUDDIN1, NUR RAIHANA ITHNIN1, HIDAYATULFATHI BINTI OTHMAN2, ZATUL-'IFFAH BINTI ABU HASAN3 & NORASHIQIN MISNI1,*

 

1Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti  Kebangsaan Malaysia, Jalan Raja Muda A. Aziz, 50300 Kuala Lumpur, Malaysia

3Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

 

Received: 13 September 2023/Accepted: 28 March 2024

 

Abstract

In this present study, silver nanoparticles were synthesized by green biological synthesis method using plant extract from fruit peel of Citrus aurantifolia as reducing agents. All the parameters in the synthesis of silver nanoparticles (AgNPs) were optimized to achieve a better yield, controlled size and stability of the particles. The biosynthesis of silver nanoparticles was monitored via UV-vis spectrophotometer and stability test was done. The resulting UV-Vis spectra of synthesized AgNPs from C. aurantifoliafruit peel extract (CAFPE) showed standard surface plasmon resonance band at 420 nm which indicated the presence of AgNPs. The optimum result was obtained with an optimum concentration at 4 mM AgNO3, leaving in a dark room temperature for 24 h and using a concentration 1:3 ratio (extract: silver nitrate). Moreover, the stability of the CAFPE-AgNPs was also observed after 30 days of synthesis and even up to 10 months, indicating optimization plays major role towards the stability fate of nanoparticles. The FTIR analysis showed possible functional groups of biomolecules that play roles in the bioreduction and capping of silver nanoparticles. In addition, it is believed that these parameters are highly suitable for bulk production of single spherical AgNPs with diameter 29.6- 45.2 nm confirmed via FESEM. Thus, the obtained results clearly suggest that optimization of silver nanoparticles may have important role in attaining a better yield and stability of metal nanoparticles, refraining back to its original structure or particles.

 

Keywords: Citrus aurantifolia; green synthesis; optimization; plant extract; silver nanoparticles

 

Abstrak

Dalam kajian ini, nanozarah perak telah disintesis melalui kaedah sintesis biologi hijau menggunakan ekstrak tumbuhan daripada kulit buah Citrus aurantifolia sebagai agen penurunan. Semua parameter dalam sintesis nanozarah perak (AgNPs) telah dioptimumkan untuk mencapai hasil yang lebih baik, saiz terkawal dan kestabilan zarah. Biosintesis nanozarah perak diuji melalui spektrofotometer UV-vis dan ujian kestabilan juga telah dilakukan. Spektrum UV-Vis terhasil bagi AgNPs tersintesis daripada ekstrak kulit buah C. aurantifolia (CAFPE) menunjukkan jalur resonans plasmon permukaan piawai pada 420 nm yang menunjukkan keberhasilan pembentukan AgNPs. Keputusan optimum diperoleh dengan kepekatan optimum pada 4 mM AgNO3, dibiarkan dalam suhu bilik gelap selama 24 jam dan menggunakan nisbah kepekatan 1:3 (ekstrak: perak nitrat). Selain itu, kestabilan CAFPE-AgNPs juga diperhatikan selepas 30 hari sintesis dan malah sehingga 10 bulan, menunjukkan pengoptimuman memainkan peranan utama ke arah nasib kestabilan nanozarah. Analisis FTIR menunjukkan kebarangkalian kumpulan biomolekul yang memainkan peranan dalam bioreduksi dan agen penutup nanozarah perak. Selain itu, adalah dipercayai bahawa parameter ini sangat sesuai untuk pengeluaran pukal AgNPs sfera tunggal dengan diameter 29.6 - 45.2 nm yang turut disahkan melalui FESEM. Oleh itu, keputusan yang diperoleh dengan jelas menunjukkan bahawa pengoptimuman nanozarah perak mungkin mempunyai peranan penting dalam mencapai hasil yang lebih baik dan ke arah kestabilan nanozarah logam, selain daripada menahan kembalinya AgNPs kepada struktur atau zarah asalnya.

 

Kata kunci: Citrus aurantifolia; ekstrak pokok; nanozarah perak; pengoptimuman; sintesis hijau

 

REFERENCES

Adebayo-Tayo, B.C., Akinsete, T.O. & Odeniyi, O.A. 2016. Phytochemical composition and comparative evaluation of antimicrobial activities of the juice extract of Citrus aurantifolia and its silver nanoparticles. Nig. J. Pharm. Res. 12(1): 59-64.

Ahmad, B., Ali, J. & Bashir, S. 2013. Optimization and effects of different reaction conditions for the bioinspired synthesis of silver nanoparticles using Hippophae rhamnoides linn. leaves aqueous extract. World Applied Sciences Journal 22(6): 836-843. https://doi.org/10.5829/idosi.wasj.2013.22.06.7394

Ahmed, S., Ahmad, M., Swami, B.L. & Ikram, S. 2016. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research 7(1): 17-28. https://doi.org/10.1016/j.jare.2015.02.007

Alafandi, L., Nasaruddin, R.R., Aziz, A., Engliman, S. & Mastuli, M.S. 2021. Green synthesis of silver nanoparticles using coffee extract for catalysis. Malaysian NANO International Journal 1(2): 13-25. https://doi.org/10.22452/mnij.vol1no2.2

Alkhulaifi, M.M., Alshehri, J.H., Alwehaibi, M.A., Awad, M.A., Al-Enazi, N.M., Aldosari, N.S., Hatamleh, A.A. & Abdel-Raouf, N. 2020. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi Journal of Biological Sciences 27(12): 3434-3441. https://doi.org/10.1016/j.sjbs.2020.09.031

Arya, G., Kumari, M.R., Gupta, N., Kumar, A., Chandra, R. & Nimesh, S. 2018. Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: Reaction optimization, antimicrobial and catalytic activities. Artificial Cells, Nanomedicine and Biotechnology 46(5): 985-993. https://doi.org/10.1080/21691401.2017.1354302

Baker, S., Rakshith, D., Kavitha, K.S., Santosh, P., Kavitha, H.U., Rao, Y. & Satish, S. 2013. Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles.  BioImpacts3(3): 111-117. https://doi.org/10.5681/bi.2013.012

Balavijayalakshmi, J. & Ramalakshmi, V. 2017. Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. Journal of Applied Research and Technology 15(5): 413-422. https://doi.org/10.1016/j.jart.2017.03.010

Barik, T.K. 2020. Molecular Identification of Mosquito Vectors and Their Management. Springer.

Bélteky, P., Rónavári, A., Zakupszky, D., Boka, E., Igaz, N., Szerencsés, B., Pfeiffer, I., Vágvölgyi, C., Kiricsi, M. & Kónya, Z. 2021. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. International Journal of Nanomedicine 16: 3021-3040. https://doi.org/10.2147/IJN.S304138

Bhuyar, P., Rahim, M.H.A., Sundararaju, S., Ramaraj, R., Maniam, G.P. & Govindan, N. 2020. Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef University Journal of Basic and Applied Sciences 9: 3. https://doi.org/10.1186/s43088-019-0031-y

Boshtam, M., Moshtaghian, J., Naderi, G., Asgary, S. & Nayeri, H. 2011. Antioxidant effects of Citrus aurantifolia (Christm) juice and peel extract on LDL oxidation. J. Res. Med Sci. 16(7): 951-955.

Corbierre, M.K., Cameron, N.S., Sutton, M., Mochrie, S.G., Lurio, L.B., Rühm, A. & Lennox, R.B. 2001. Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. Journal of the American Chemical Society 123(42): 10411-10412.

Dada, A.O., Adekola, F.A., Adeyemi, O.S., Bello, M.O., Adetunji, C.O., Awakan, O.J. & Femi-Adepoju, G.A. 2018. Exploring the effect of operational factors and characterization imperative to the synthesis of silver nanoparticles. In Silver Nanoparticles - Fabrication, Characterization and Applications, edited by Maaz, K. InTech. https://doi.org/10.5772/intechopen.76947

Devi, L.S. & Joshi, S.R. 2015. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. Journal of Microscopy and Ultrastructure 3(1): 29. https://doi.org/10.1016/j.jmau.2014.10.004

Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H. & Yacaman, M.J. 2005. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology 3: 6. https://doi.org/10.1186/1477-3155-3-6

El-Kassas, H.Y. & El-Sheekh, M.M. 2014. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pacific Journal of Cancer Prevention 15(10): 4311-4317. https://doi.org/10.7314/APJCP.2014.15.10.4311

Guo, Q., Guo, Q., Yuan, J. & Zeng, J. 2014. Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 441: 127-132. https://doi.org/10.1016/j.colsurfa.2013.08.067

Herawati, D., Ekawati, E.R. & Yusmiati, S.N.H. 2020. Identification of saponins and flavonoids in lime (Citrus aurantifolia) peel extract. Proc. of the 5th NA Int. Conf. Ind. Eng. Oper. Manag, Detroit, Michigan, USA, August 10-14. pp. 3661-3666.

Ibrahim, H.M.M. 2015. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences 8(3): 265-275. https://doi.org/10.1016/j.jrras.2015.01.007

Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chemistry 13(10): 2638-2650. https://doi.org/10.1039/c1gc15386b

Jalani, N.S., Michell, W., Lin, W.E., Hanani, S.Z., Hashim, U. & Abdullah, R. 2018. Biosynthesis of silver nanoparticles using Citrus grandis peel extract. Malaysian Journal of Analytical Sciences 22(4): 676-683. https://doi.org/10.17576/mjas-2018-2204-14

Kaderides, K. & Goula, A.M. 2017. Development and characterization of a new encapsulating agent from orange juice by-products. Food Research International 100: 612-622. https://doi.org/10.1016/j.foodres.2017.07.057

Karaagac, O. & Köçkar, H. 2020. The effects of temperature and reaction time on the formation of manganese ferrite nanoparticles synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics 31(3): 2567-2564. https://doi.org/10.1007/s10854-019-02795-8

Krishnaraj, C., Ramachandran, R., Mohan, K. & Kalaichelvan, P.T. 2012. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 93: 95-99. https://doi.org/10.1016/j.saa.2012.03.002

Makarov, V.V., Love, A.J., Sinitsyna, O.V., Makarova, S.S., Yaminsky, I.V., Taliansky, M.E. & Kalinina, N.O. 2014. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 6(1): 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44

Malhotra, S.P.K. & Alghuthaymi, M.A. 2022. Biomolecule-assisted biogenic synthesis of metallic nanoparticles. Nanobiotechnology for Plant Protection. Agri-Waste and Microbes for Production of Sustainable Nanomaterials, edited by Kamel A. Abd-Elsalam, Rajiv Periakaruppan, S. Rajeshkumar. Elsevier. pp. 139-163.

Mandal, T.K., Fleming, M.S. & Walt, D.R. 2002. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Letters 2(1): 3-7.

Mohapatra, B., Kuriakose, S. & Mohapatra, S. 2015. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrumextract. Journal of Alloys and Compounds 637: 119-126. https://doi.org/10.1016/j.jallcom.2015.02.206

Monopoli, M.P., Aberg, C., Salvati, A. & Dawson, K.A. 2020. Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology 7: 779-786. https://doi.org/10.1201/9780429399039-7

Mustapha, T., Ithnin, N.R., Othman, H., Abu Hasan, Z.I. & Misni, N. 2023. Bio-fabrication of silver nanoparticles using Citrus aurantifolia fruit peel extract (CAFPE) and the role of plant extract in the synthesis. Plants 12(8): 1648. https://doi.org/10.3390/plants12081648

Narang, N. & Jiraungkoorskul, W. 2016. Anticancer activity of key lime, Citrus aurantifolia. Pharmacognosy Reviews 10(20): 118-122. https://doi.org/10.4103/0973-7847.194043

Niluxsshun, M.C.D., Masilamani, K. & Mathiventhan, U. 2021. Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorganic Chemistry and Applications 2021: 6695734. https://doi.org/10.1155/2021/6695734

Ozel, F., Kockar, H. & Karaagac, O. 2015. Growth of iron oxide nanoparticles by hydrothermal process: Effect of reaction parameters on the nanoparticle size. Journal of Superconductivity and Novel Magnetism 28: 823-829. https://doi.org/10.1007/s10948-014-2707-9

Perumal, D., Abdullah, C.A.C., Albert, E.L. & Zawawi, R.M. 2023. Green synthesis of silver nanoparticle decorated on reduced graphene oxide nanocomposite using Clinacanthus nutans and its applications. Sains Malaysiana 52(3): 953-966. https://doi.org/10.17576/jsm-2023-5203-19

Pourmortazavi, S.M., Taghdiri, M., Makari, V. & Rahimi-Nasrabadi, M. 2015. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 136(PC): 1249-1254. https://doi.org/10.1016/j.saa.2014.10.010

Qu, D., Sun, W., Chen, Y., Zhou, J. & Liu, C. 2014. Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract. International Journal of Nanomedicine 9(1): 1871-1882. https://doi.org/10.2147/IJN.S58732

Raghavan, B.S., Kondath, S., Anantanarayanan, R. & Rajaram, R. 2015. Kaempferol mediated synthesis of gold nanoparticles and their cytotoxic effects on MCF-7 cancer cell line. Process Biochemistry 50(11): 1966-1976. https://doi.org/10.1016/j.procbio.2015.08.003

Raja, P.B., Rahim, A.A., Qureshi, A.K. & Awang, K. 2014. Green synthesis of silver nanoparticles using tannins. Materials Science- Poland 32: 408-413. https://doi.org/10.2478/s13536-014-0204-2

Rakhman, S.A., Utaipan, T., Pakhathirathien, C. & Khummueng, W. 2022. Metal and metal oxide nanoparticles from Mimusops elengi Linn. Extract: Green synthesis, antioxidant activity, and cytotoxicity. Sains Malaysiana 51(9): 2857-2871. https://doi.org/10.17576/jsm-2022-5109-10

Reena, K., Prabakaran, M., Leeba, B., Gajendiran, M. & Antony, S.A. 2017. Green synthesis of pectin-gold-PLA-PEG-PLA nanoconjugates: In vitro cytotoxicity and anti-inflammatory activity. Journal of Nanoscience and Nanotechnology 17(7): 4549-4557.

Shan, J., Nuopponen, M., Jiang, H., Kauppinen, E. & Tenhu, H. 2003. Preparation of poly (N-isopropylacrylamide)-monolayer-protected gold clusters: Synthesis methods, core size, and thickness of monolayer. Macromolecules 36(12): 4526-4533.

Singh, P., Kim, Y.J., Zhang, D. & Yang, D.C. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology 34(7): 588-599. https://doi.org/10.1016/j.tibtech.2016.02.006

Song, Z., Kelf, T.A., Sanchez, W.H., Roberts, M.S., Rička, J., Frenz, M. & Zvyagin, A.V. 2011. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomedical Optics Express 2: 3321-3333.

Sun, W., Qu, D., Ma, Y., Chen, Y., Liu, C. & Zhou, J. 2014. Enhanced stability and antibacterial efficacy of a traditional chinese medicine-mediated silver nanoparticle delivery system. International Journal of Nanomedicine 9(1): 5491-5502. https://doi.org/10.2147/IJN.S71670

Sunday, E., Ogunyemi, I.O., Bala, M.S., Oruene, I.S., Suleiman, M.M. & Ambali, S.F. 2015. Ethnomedical importance of Citrus aurantifolia (Christm) swingle. The Pharma Innovation Journal 4(8): 01-06. www.thepharmajournal.com.

Taniguchi, N. 1974. On the basic concept of ‘nano-technology’. In Proceedings of International Conference on Production Engineering (ICPE); Tokyo, Part II. Japan Society of Precision Engineering. pp. 18-23.

Teranishi, T., Kiyokawa, I. & Miyake, M. 1998. Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents. Advanced Materials 10(8): 596-599.

Wolny-Koładka, K.A. & Malina, D.K. 2017. Silver nanoparticles toxicity against airborne strains of Staphylococcusspp. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering 52(13): 1247-1256. https://doi.org/10.1080/10934529.2017.1356186

Yazdani, S., Daneshkhah, A., Diwate, A., Patel, H., Smith, J., Reul, O., Cheng, R., Izadian, A. & Hajrasouliha, A.R. 2021. Model for gold nanoparticle synthesis: Effect of pH and reaction time. ACS Omega 6(26): 16847-16853. https://doi.org/10.1021/acsomega.1c01418

Ying, S., Guan, Z., Ofoegbu, P.C., Clubb, P., Rico, C., He, F. & Hong, J. 2022. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology and Innovation. 26: 102336. https://doi.org/10.1016/j.eti.2022.102336

Yusof, F., Chowdhury, S., Sulaiman, N. & Faruck, M.O. 2018. Effect of process parameters on the synthesis of silver nanoparticles and its effects on microbes. Jurnal Teknologi 80(3): 115-121. https://doi.org/10.11113/jt.v80.11465

Zhang, Y., Gu, C., Schwartzberg, A.M., Chen, S. & Zhang, J.Z. 2006. Optical trapping and light-induced agglomeration of gold nanoparticle aggregates. Physical Review B - Condensed Matter and Materials Physics 73(16): 165405. https://doi.org/10.1103/PhysRevB.73.165405

 

*Corresponding author; email: norashiqin@upm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous